jueves, 13 de octubre de 2011

Metodos de Resolución de Ecuaciones

 
SISTEMAS DE ECUACIONES
Para resolver un sistema de dos ecuaciones con dos incógnitas podemos utilizar uno de los siguientes métodos:
  1. Sustitución
  2. Igualación
  3. Reducción
RESOLUCIÓN DE UN SISTEMA DE ECUACIONES POR EL MÉTODO DE SUSTITUCIÓN
Sea el sistema   3x + y = 11
                          5x –y = 13
Primero en una de las ecuaciones se halla el valor de una de las incógnitas. Hallemos la y en la primera ecuación supuesto conocido el valor de x
y=11-3x
Se sustituye en la otra ecuación el valor anteriormente hallado
5x-(11-3x)=13
Ahora tenemos una ecuación con una sóla incógnita; la resolvemos
5x-11+3y=13
5x+3x=13+11
8x=24
x=3
Ya conocido el valor de x lo sustituimos en la expresión del valor de y que obtuvimos a partir de la primera ecuación del sistema
y=11-3x
y=11-9
y=2

Así la solución al sistema de ecuaciones propuesto será x=3 e y=2
RESOLUCIÓN DE UN SISTEMA DE ECUACIONES POR EL MÉTODO DE IGUALACIÓN
Sea el sistema     3x + y = 11
                          5x –y = 13

Lo primero que haremos será despejar en las dos ecuaciones la misma incógnita
Sea el sistema   3x + y = 11
                          5x –y = 13

Igualamos ambas ecuaciones
11-3x=-13+5x
8x=24
x=3
Este valor de x lo sustituímos en cualquiera de las ecuaciones de y
y=11-9
y=2

RESOLUCIÓN DE UN SISTEMA DE ECUACIONES POR EL MÉTODO DE REDUCCIÓN
 Sea el sistema   3x + y = 11
                          5x –y = 13

Sumaremos miembro a miembro las dos ecuaciones que componen el sistema
3x + y = 11
5x – y = 13
8x + 0 = 24
8x=24
x=3 y sustituyendo este valor en cualquiera de las ecuaciones del sistema obtenemos y=2


Presentación en power point por alumnos de 4to año

Recreo Matemático

http://www.mlevitus.com/ecuaciones.html
http://www.youtube.com/watch?v=BAXoa6cwpTA&noredirect=1
http://www.youtube.com/watch?v=aduDEcL28l0&feature=related

miércoles, 12 de octubre de 2011

Problemas para trabajar Sistema de Ecuaciones

En la granja

1. En una granja se crían crían gallinas y conejos. Si se cuentan las cabezas, son 50, si las patas, son 134. ¿Cuántos animales hay de cada clase?
2. Un granjero cuenta con un determinado número de jaulas para sus conejos. Si introduce 6 conejos en cada jaula quedan cuatro plazas libres en una jaula. Si introduce 5 conejos en cada jaula quedan dos conejos libres. ¿Cuántos conejos y jaulas hay?

Sistema de Ecuaciones

En general, un sistema con m ecuaciones lineales y n incógnitas puede ser escrito en forma ordinaria como:
   \begin{matrix}
      a_{11}x_1 & + a_{12}x_2 & + \dots & + a_{1n}x_n & = b_1 \\
      a_{21}x_1 & + a_{22}x_2 & + \dots & + a_{2n}x_n & = b_2 \\
      \dots     & \dots       & \dots   & \dots       & \dots \\
      a_{m1}x_1 & + a_{m2}x_2 & + \dots & + a_{mn}x_n & = b_m
   \end{matrix}
Donde x_1,\dots,x_n\, son las incógnitas y los números a_{ij}\in\mathbb{K} son los coeficientes del sistema sobre el cuerpo \mathbb{K}\ [= \R, \mathbb{C}, \dots]. Es posible reescribir el sistema separando con coeficientes con notación matricial:
   \begin{bmatrix}
      a_{11} & a_{12} & \cdots & a_{1n} \\
      a_{21} & a_{22} & \cdots & a_{2n} \\
      \vdots & \vdots & \ddots & \vdots \\
      a_{m1} & a_{m2} & \cdots & a_{mn}
   \end{bmatrix} 
   \begin{bmatrix}
      x_1 \\
      x_2 \\
      \vdots \\
      x_n
   \end{bmatrix} =
   \begin{bmatrix}
      b_1 \\
      b_2 \\
      \vdots \\
      b_m
   \end{bmatrix}
Si representamos cada matriz con una única letra obtenemos:
   \mathbf{Ax} = \mathbf{b}
Donde A es una matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan los coeficientes.